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McDougall and McIntosh showed that the adiabatic mesoscale mixing is represented incomple-
tely in the tracer Eulerian-averaged equation (EAE) of coarse resolution OGCMs. We show
that completing EAE requires an adequate decomposition of the mesoscale tracer flux
F� ¼ U0�0 which is achieved by means of transforming mesoscale fields to isopycnal coordinates
(IC) where mesoscale dynamics has the simplest form. The transformation results in splitting
F� into two components ~Fb and ~F� : the former is determined by buoyancy mesoscale dynamics
only and has a trivial kinematic dependence on the mean tracer field, the latter is determined by
mesoscale tracer dynamics. Thus, the problem of modelling (parameterizing) F� in ZC is
divided in two stages which can be termed kinematic and dynamic. The kinematic stage consists
in adequate decomposing F� , and the result is expressed in terms of mesoscale fields.
The dynamic stage consists in applying a specific dynamic mesoscale model to parameterize
the components of F� . In this article, we show that some components of F� are missing in
ZC-OGCMs tracer equation and that their contribution is of the same order of magnitude
as the mesoscale contribution itself. We also show that F� has components across mean

isopycnals and that their existence is consistent with the adiabatic approximation which
requires vanishing all fluxes across isopycnal surfaces. As for practical results, we derive the
complete equation for the large scale tracer in ZC-OGCMs and present the parameterization
of the terms which have been missing thus far.

Keywords: Diapycnal mesoscale fluxes; Adiabatic approximation; Diffusion tensor; Dynamic
mesoscale model

1. Introduction

As McDougall and McIntosh (2001, hereafter MM01) showed, the tracer Eulerian-
averaged equation (EAE) in z-coordinates (ZC) used in OGCMs, is incomplete
due to the incomplete representation of the adiabatic mesoscale mixing. Perhaps, this
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incompleteness was one of the motives to develop an alternative approach which is the
time-residual-mean (TRM) model whose tracer equation is complete. The latter looks
similar to the incomplete EAE used thus far in ZC-OGSMs. On this basis some physical
oceanographers conclude that solutions of the incomplete EAE may be interpreted as
that of TRM formalism provided one interprets solutions for Eulerian mean tracer
field as that for thickness-weighted one. However, as we discuss in Conclusion section,
this is not the case. Although TRM may become a good alternative of EAE, at present
there exists a plenty of EAE codes while three-dimensional TRM codes for climate
modelling simulations are not available yet (although in the framework of TRM
formalism there were performed two-dimensional numerical experiments by
Aiki et al. (2004) for a zonally uniform channel). In addition, in the mixed layer
(ML) the TRM scheme is not applicable as well as the isopycnal coordinates (IC) form-
alism. Applying TRM in the ocean interior and EAE in ML, one will be
confronted with the problem of matching Eulerian and thickness-weighted mean
fields and mesoscale fluxes at the boundary between the upper layer including ML
and the transition layer, and the interior. Thus, a work on improving ZC-OGCMs
makes sense.

Returning to the missing terms in EAE for tracer fields, we recall that MM01
presented them in the second order in fluctuating fields (see MM01
equations (54), (55)) and noticed that these terms ‘would be very difficult to
parameterize’. In this study we show that the problem can be solved with the use of
an optimal decomposition of the mesoscale tracer flux

F� ¼ U0�0 ð1aÞ

in EAE for tracer �

@ ��

@t
þ �UEJ �� þ JEF� ¼ Q�, ð1bÞ

where U ¼ �UþU0 is the 3D-velocity field (mean and fluctuating correspondingly), Q� is
a diabatic source (sink) of the tracer �. In the present article we concentrate ourselves
in the adiabatic (reversible) contribution of mesoscale eddies to the flux F�. The optimal
decomposition of F� from viewpoint of modelling is determined by the fact that appro-
priate coordinates for mesoscale modelling are IC where mesoscale treatment is more
transparent than in ZC. This is true not only for dynamic mesoscale models like that
developed by the authors recently (Canuto and Dubovikov 2005, 2006, Dubovikov
and Canuto 2005; hereafter OM1, OM2, GAFD) but also for a phenomenological
approach like GM (Gent and McWilliams 1990, Gent et al. 1995). The reason is that
in IC, in the adiabatic approximation, the ocean flow occurs along isopycnal surfaces
and can be considered as a set of 2D isopycnal turbulent flows between which non-linear
interactions are negligible. As a result, to parameterize mesoscale fluxes in ZC, one needs
to begin with expressing eddy fields in equation (1a) in terms of that in IC. The transfor-
mation process is far from trivial due to the random nature of the density field.
Nevertheless, as shown in OM2 and GAFD, the transformation relations can be
expanded in powers of the small parameter jh00= �hj < 0:1 where h ¼ z� is the thickness
of isopycnal layers and 00 denote mesoscale fields in IC. In this article, we restrict ourselves
with the lowest-order approximation in which, as discussed in Appendix A of OM2
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(notice that the notations 0 and 00 in OM2 and below do not coincide), we have (see also
MM01, equations (28), (39) and comments above the latter formula which point out
that fluctuating fields in IC in both the thickness-weighted form and non-
thickness-weighted one coincide at leading order considered in MM01)

U0 ¼ U00 �N�2 �Uzb
0, �00 ¼ �0 �N�2 ��zb

0, ð1cÞ

where b is the buoyancy field, N is the Brunt-Vaisala frequency, N2 ¼ �bz. As discussed
in OM2 and GAFD, the first term on the right-hand side of the first relation (1c)
exceeds the second one, at least, in order of magnitude and we neglect it (this conclusion
follows from the simple fact that the mesoscale velocity exceeds the mean one while for
all other fields, analogous inequalities are opposite). In fact, as we discussed in OM2
and GAFD, the typical value of the field ðN�2b0Þ2 � ðz0Þ2 is � 103 m2 due to the
filling factor of mesoscale eddies � 0:1. Next, taking into account the typical values
jUzj � 10�4 s�1, N2 � 10�5 s�2 and U0 � 0:1ms�1, we conclude that the first term
on the right-hand side of first relation (1c) exceeds the second one, at least, in order
of magnitude. Thus, in accordance with the discussed arguments, we decompose F�

as follows:

F� ¼ ~F� þ ~Fb, ð1dÞ

where

~F� ¼ U0�00 � U00�00, ~Fb ¼ N�2 ��zFb ¼
@ ��

@ �b

� �
Fb ð1eÞ

and Fb ¼ U0b0 is the buoyancy flux. Substituting decomposition (1d) in equatin (1b),
we notice that the mesoscale-induced mixing of �� is effected by the two dynamically
different fluxes ~Fb and ~F�. The former has a trivial kinematic dependence on �� and
does not depend on mesoscale tracer dynamics. Thus, the corresponding mixing of the
mean tracer can be termed ‘kinematical’ in respect of ��. The parameterization of ~Fb

may be obtained without developing tracer dynamics once we have studied buoyancy
mesoscale dynamics in our previous work. In contrast with ~Fb, the flux ~F� is formed by
mesoscale tracer dynamics and so the corresponding mixing may be termed dynamic.
Further decompositions of the fluxes ~Fb and ~F� are determined by the criterion of simpli-
city of the parameterization and interpretation of their components as well as by the con-
dition that (1b) to be formally close to the tracer equation used at present in OGCMs

@ ��

@t
þ ð �Uþ uMÞ � J �� ¼ DR þQ�, ð2aÞ

where uMðuþ,wþÞ is the eddy induced velocity and DR is the diffusion term. Usually in
OGCMs uMðuþ,wþÞ is parameterized within the GM model (Gent and McWilliams
1990, Gent et al. 1995), while DR is parameterized in the Redi (1982) form

uþGM ¼ �
@

@z
ð�MLÞ, wþ

GM ¼ JHEð�MLÞ, ð2bÞ

DR ¼ JEKEJ ��, K ¼ �Mð�ð2Þ þ Lkþ kLþ LELkkÞ, ð2cÞ
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where �ð2Þ is the 2D Kroneker tensors, L ¼ �N�2
JH

�b is the slope of mean isopycnals,
JH is the horizontal gradient operator, k is the unit vertical vector. Usually
the diffusivity �M is adopted to be constant � 103 m2s�1 although in reality it is variable.

The discussion above (2a) implies that the problem of modelling (parameterizing) the
mesoscale tracer flux in ZC is divided in the two stages which can be termed ‘kinematic’
and dynamic. The approaches to kinematic and dynamic problems are quite different.
In fact, the first one is model-independent and its solution is exact and of general inter-
est while the second one is specific for an adopted dynamic approximation and,
as a rule, is more disputable. So, it is reasonable to split the analysis into two parts.
In the present work we show that OGCMs EAE for tracer misses some components
of F� which are of the same order of magnitude as the mesoscale contribution
itself and radically influence upon the mesoscale diffusivity tensor and the mesoscale
advection velocity. Furthermore, the flux F� contains components across mean

isopyenals. Such fluxes were neglected in OGCMs thus far on the basis that in the adia-
batic approximation all diapycnal fluxes in IC vanish. Nevertheless, using an eddy
resolving code, Gille and Davies (1999) found that the eddy induced diapycnal flux
of the buoyancy field �b ‘is too large to be ignored’. Tandon and Garrett (1996),
Radko and Marshall (2004a,b) and Eden et al. (2005) from different arguments also
concluded that �b is not zero. In the previous work OM2, GAFD we have derived
the expressions for �b in terms of large-scale fields in the framework of the mesoscale
dynamical model and have concluded that the association with �b diffusivity achieves
a maximum where the eddy potential energy is maximal and there it can exceed the
diabatic (background) diffusivity �0:1 cm2 s�1. The depth of the maxima is about
600m which is below the mixed layer. This conclusion is confirmed by the recent simu-
lations by Henning and Vallis (2005). The consensus is therefore that �b cannot be
ignored. We discuss the problem of consistency of fluxes across mean isopycnals with
the adiabatic approximation and show that the problem ensues from the incompatibil-
ity of the definitions of the diapycnal fluxes and the diapycnal velocity in ZC and IC: in
the latter case, the diapycnal velocity is defined with respect to the isopycnal surfaces
which vary in time while in ZC the diapycnal velocity is computed with respect to
mean isopycnals at a given moment, i.e. frozen isopycnals. Generalizing the first defini-
tion of diapycnal velocity to an arbitrary coordinate system, we show: (a) the flux
of any field across isopycnals has two parts: the first represents the flux across frozen
(stationary) isopycnals and the second represents the flux due to the time variation of
the isopycnal surfaces themselves; (b) in the adiabatic approximation the sum of the
two fluxes is indeed zero while each of the two components can be non-zero; and
(c) a flux across mean isopycnals is not the full flux and may be non-zero; in particular,
�b equals the buoyancy flux across the frozen isopycnals; in addition, it coincides with
the opposite sign with the rate of the potential energy production and therefore it is
non-zero and negative. Therefore the residual mesoscale diffusivity

�rm � �N�2�b, ð3aÞ

which was introduced in OM2, is positive and represents a down-gradient diffusion
across mean isopycnals. The parameterization of �rm in terms of large scale fields has
been derived in OM2 in the framework of the dynamical mesoscale model.
We stress that although this diffusivity is diapycnal, it represents an adiabatic
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mesoscale mixing. Thus, one can conclude that the adiabatic mesoscale mixing is
represented incompletely in the tracer OGCM equation in ZC which, therefore,
should be supplemented, at the very least, by the divergence of the residual
diapycnal tracer flux

�r
� ¼ ��rm ��z ð3bÞ

which is a counterpart of the flux �b. In this study we also find other components of F�

which are missing in OGCMs. As for practical results, we derive the complete EAE for
the large-scale tracer in ZC-OGCMs and present the parameterization of the mesoscale
tracer fluxes ~F� and ~Fb (1e).

2. Decomposition of ~Fb and ~Fs and complete mean tracer equation in ZC

We begin with decomposing the flux ~F� and impose the condition that one of its
components yields a diffusion term analogous to the Redi form (2c). This condition
is satisfied if we decompose ~F� into isopycnal and diapycnal components ~Fi

� and ~�� .
We obtain

~�� ¼ N�2 ~F�EJ �b; ~Fi
� ¼

~F� � ~��n �b, ð4aÞ

where n �b is the unit vector normal to mean isopycnals. With account for the first order
of the small parameter j �b�1

z JH
�bj we have

n �b ¼ kþ �b�1
z JH

�b: ð4bÞ

To simplify the further derivations, we remember that finally we will compute the diver-
gence of all fluxes. Since the vertical components of all diapycnal fluxes considerably
exceed the horizontal ones and, in addition, all vertical derivatives considerably
exceed horizontal ones, we may keep only the term k in relation (4b) when substituting
it into (4a). Then we derive

~Fi
� ¼

~FH
� ��Hk, ~FH

� ¼ u0�00 � u00�00, �H ¼ � ~FH
� EL, ð4cÞ

where u is the horizontal component of the velocity field U. To obtain the
contribution of ~F� to (1b), one needs to apply the operator J to the isopycnal and
diapycnal components of ~F� given in (4a,c). We obtain the following result:

rE ~F� ¼ JE ~Fi
� þ

~��
z, JE ~Fi

� ¼ JHE ~F
H
� �

@�H

@z
: ð5aÞ

The second expression represents a diffusion along mean isopycnals. In fact, with
account for (4c), it can be rewritten in the following form:

�Dð�Þ ¼ JE ~Fi
� ¼ N2

J ��EðN
�2 ~FH

� Þ, ð5bÞ
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where

J �� ¼ JH þ L
@

@z
ð5cÞ

is the gradient operator in a system where horizontal coordinate surfaces are the mean
isopycnals. Next, since in the considered approximation J� ¼ J ��, with account for the
second relation (4c), the right-hand side of (5b) coincides with the diffusion term in IC
given in (5) of Gent et al. (1995), whose parameterization was suggested in
their equation (6). In the considered approximation in which �� and � differ only
at the second order in fluctuating fields (see MM1 comments above equation (39)),
the suggested parameterization can be presented in the following form

~FH
� ¼ ��MJ�� ¼ ��MJ �� ��, ð5dÞ

where � is the mean tracer in IC. In OGCMs it is adopted �M ¼ const: �103 m2 s�1.
Then the last expression (5d) together with (5b) yields the Redi diffusion (2c). Thus,
from equations (5a,b) it follows

JE ~F� ¼ �Dð�Þ þ ~��
z: ð5eÞ

Next, we decompose the flux ~Fb requiring that after substituting into (1b), one of its
components reproduces the term of the OGCMs tracer equation (2a) with the eddy-
induced velocity uM. The appropriate decomposition is into components ~F�

b and ~�b

which are the projections of the flux ~Fb on a surface of constant �� and on the normal
to it correspondingly. Thus,

~�b ¼ ���1
z

~FbEJ �� ¼ N�2FbEJ ��: ð6aÞ

The normal n �� may be presented analogously to (4b) with the substitution �b ! ��.
Repeating the arguments which are below (4b), we may substitute n �� ! k. Then
from (6a) we obtain

~F�
b ¼ N�2 ��zFb � ~�bk ¼ N�2 ��zF

H
b �N�2ðJH ��ÞEFH

b k, ð6bÞ

where FH
b ¼ u0b0 is the horizontal buoyancy flux. Taking the divergences of ~Fb and

accounting for the well-known relations

uþ ¼ �
@

@z
ðN�2FH

b Þ, wþ ¼ JHEðN
�2FH

b Þ, ð6cÞ

we obtain

JE ~Fb ¼ JE~F
�

b þ
~�b
z , JE~F

�

b ¼ uMEJ ��: ð6dÞ
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Substituting (5e), (6d), and (1d) into (1b) we obtain the complete mean tracer
equation in ZC

@ ��

@t
þ ðUþ uMÞEJ �� ¼ Dð�Þ ���

z þQ�, ð7aÞ

where

�� ¼ ~�� þ ~�b: ð7bÞ

Recall that the term with uM in (7a) represents the contribution of the component of
~Fb within a surface of constant �� but not of constant �b as in the case of the flux Fb in the
buoyancy equation (Andrews and McIntyre 1976). In the same time, the term �� on the
right-hand side of (7a) is composed by the diapycnal flux ~�� (4a) and by the flux ~�b (6a)
across a surface of constant ��, as given in (7b). Recall that all mesoscale terms in (7a)
with the exception of Q�, represent the eddy adiabatic mixing. Notice that the OGCMs
tracer equation (2a) includes only the isopycnal component of the flux ~F� and the
component within a surface of constant �� of the flux ~Fb but lacks the orthogonal to
the components which yield the mesoscale term ��

z in the complete equation (7a).
As we show below, the missing term is of the same order of magnitude as the mesoscale
term uM � r �� and therefore has to be parameterized and accounted for. Equation (7a) is
applicable equally to passive and active tracers, like T and S, and even to the
buoyancy (density) field. In the latter case, we have

Dð�Þ ¼ 0, ~�� ¼ 0, ~�b ¼ �b � N�2FbEJ �b ð7cÞ

and thus (7a) reduces to the well-known mean buoyancy equation (see, for example,
Treguier et al. 1997, equation (5))

@ �b

@t
þ ðUþ uMÞEJ �b ¼ ��b

z þQb: ð7dÞ

Finally, we discuss the boundary conditions for the fluxes �� , ~�� , and ~�b at the sur-
face and bottom. To this end we recall that the mesoscale fields z00 and b0 ¼ �z00 �bz
vanish at that boundaries (see OM1) and therefore this is true also for the buoyancy
flux Fb ¼ U0b0. Then from definitions (6a,c) it follows that

wþðz ¼ 0, �HÞ ¼ ~�bðz ¼ 0, �HÞ ¼ 0: ð7eÞ

As far as the flux ~��, next we derive the representation (12d) for it from which it follows
that ~�� satisfies the same condition as ��:

~��ðz ¼ 0, �HÞ ¼ ��ðz ¼ 0, �HÞ ¼ 0: ð7fÞ

To make (7a) usable in OGCMs, one needs to parameterize the mesoscale functions
uM, D(�), �� in terms of large-scale fields that we discuss in section 5. In the next two
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sections we discuss the problem of consistency of the tracer fluxes across
mean isopycnals, like �r

�, (3b), or
~��, (4a), with the adiabatic approximation since

it is frequently stated in the literature that they are inconsistent. For example,
Gille and Devis (1999) who were first to prove numerically that �b is not zero, inter-
preted their result as follows: ‘We find that eddy-induced advection, which is
adiabatic in the high-resolution model, will appear diabatic if we examine only compo-
nents resolved by coarse-resolution models.’ Another example: Eden et al. (2005) have
also studied the problem of �b. While recognizing that it ‘may be important
in the dynamics of the large-scale ocean circulation’, they state that ‘it may not be
physically justified’ and that ‘desirable feature is that there should be no diapycnal
fluxes in the mean equations.’ On this premises, they exploit the gauge freedom
to add a curl to the eddy fluxes so as to make �b disappear from the buoyancy
equation. If the elimination of �b were dictated, say, by numerical reasons, there
could be no objections. However, the authors express their motivation in the statement
(i) of section 1 that the existence of diapycnal fluxes is not consistent with the
adiabatic approximation. Thus, the purpose of the next two sections is to show
that this statement is incorrect. In addition, this analysis is helpful for parameterizing
the fluxes ~�� and ~�b.

3. Diapycnal fluxes and the adiabatic approximation

As we just show, the problem ensues from the incompatibility of the traditional defini-
tions of the diapycnal fluxes and the diapycnal velocity in ZC and IC. In fact, the flux
�b (7c) is traditionally termed the diapycnal buoyancy flux in ZC. This implies that the
diapycnal velocity must be defined with respect to mean isopycnals taken at a given
moment, i.e. isopycnals frozen in time

wd ¼ U � n �b, ð8aÞ

where n �b is the unit vector normal to a mean isopycnal given in (4b). Indeed,
substituting (8a) and (4b) in the definition of the diapycnal buoyancy flux b0wd ¼ �b,
we obtain expression (7c) for �b. On the other hand, in IC the diapycnal velocity
is defined with respect to isopycnal coordinate surfaces which vary in time in physical
space. One can present this definition in an arbitrary coordinate system as follows:

wD ¼ ðU�UsÞEnb, ð8bÞ

where Us is the velocity of a given element of an isopycnal surface and nb is the unit
vector normal to this element. We use the different subscripts in the designations of
the diapycnal velocities (8a,b) to distinguish their definitions with respect to frozen
and varying isopycnals correspondingly. Since both variables wd and wD are useful
in different analyses, we suggest to term them differently keeping the term diapycnal
velocity for wd and using the term diapycnic velocity for wD in the spirit of the
Bleck’s (2002) terminology for isopycnal coordinates. In these terms, the adiabatic
approximation implies vanishing the diapycnic velocity, i.e.

wD ¼ 0: ð8cÞ
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Thus, for analysis of the adiabatic approximation, the appropriate flux of a field A is
the diapycnic one

FA ¼ wDA ¼ ðU�UsÞEnbA, ð9aÞ

which is the sum of the two fluxes

Ff
A ¼ UEnbA, Fs

A ¼ �UsEnbA, ð9bÞ

where Ff
A is the flux across the frozen isopycnal and Fs

A is the contribution of the
isopycnal variation to the diapycnic flux FA. Thus (9a) can be written as

FA ¼ Ff
A þ Fs

A ¼ wDA: ð9cÞ

Therefore, under condition (8c), we have

FA ¼ Ff
A þ Fs

A ¼ 0 ð9dÞ

i.e. in the adiabatic approximation, all diapycnic fluxes vanish, but this is not the case
for diapycnal fluxes.

Finally, for using in concrete analysis, we express the fluxes Ff
A and Fs

A in IC and ZC.
In the latter case, analogously to (4b), we have

nb ¼ kþ b�1
z JHb, Us ¼ �b�1

z btk: ð10aÞ

Hence it follows

UEnb ¼ wþ b�1
z uEJHb, UsEnb ¼ �b�1

z bt: ð10bÞ

Substituting this result into (9b), the two fluxes become

Ff
A ¼ Awþ Ab�1

z uEJHb, Fs
A ¼ Ab�1

z bt: ð10cÞ

Transformation of this result to IC yields

Ff
A ¼ Aw� AuEJ�z, Fs

A ¼ �Azt: ð10dÞ

To consider the problem of consistency of fluxes across mean isopycnals with the
adiabatic approximation, one needs to express such fluxes in terms of Ff

A and Fs
A

that is helpful also for parameterizing the fluxes. In particular, we are interested
in the diapycnal fluxes �b and ~�� and their relation to the adiabatic approximation.
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4. Expressions for Db and ~Ds in terms of Ff
A and Fs

A

We begin from the buoyancy flux �b (7c). To study the problem, we choose
A ¼ B � N�2bzb

0 � b0. Then from (10c) and (9d) we obtain correspondingly

N2Fs
B ¼

@

@t
1
2 b

02
� �

, N2Ff
B ¼ N2�b þ �UEJ 1

2 b
02

� �
þ 1

2U
0EJb02, ð11aÞ

@

@t
1
2 b

02
� �

þ �UEJ 1
2 b

02
� �

þ 1
2U

0EJb02 ¼ �N2�b: ð11bÞ

The second and third terms on the left-hand side of (11b) represent the advection
and diffusion of the buoyancy variance whereas the right-hand side represents
its production. Following MM01, we argue that the diffusion term is negligible in com-
parison with the advection one since the former is a third-order term in fluctuating
fields. As shown in GAFD, the advection term, in turn, is negligible in comparison
with the production. Neglecting the second and third terms on the left-hand side of
(11b) and the same terms in (11a), we obtain the final result:

�Fs
B ¼ Ff

B ¼ �b, ð11cÞ

which shows that �b is not the full diapycnic buoyancy flux, rather it relates to the
components either Ff

B or �Fs
B of the diapycnic flux of the field B � N�2bzb

0 � b0.
Notice that

W ¼ 1
2N

�2b02, ð11dÞ

where W is the eddy potential energy. Accounting for that the characteristic time-scale
of the variation of N is longer than that ofW and neglecting the advection and diffusion
terms in (11b), we obtain the equation

@W

@t
¼ ��b, ð11eÞ

which implies that the production of eddy potential energy is local, i.e., the growth rate
of the potential energy is determined by its production in the same place. Result (11e)
may be interpreted as the condition of the adiabatic approximation instead of the
previously adopted condition �b ¼ 0.

Notice that it is usually suggested (see, for example, Treguier et al. 1997) to
apply (11b) to a stationary flow. However, such an analysis is not applicable in the adia-
batic approximation. In fact, in the case of stationary flows in the complete equation for
@b02=@t which contains also the diabatic term, the production term �2N2�b is mainly
balanced by the dissipation due to the diabatic mixing. In the adiabatic approximation
the dissipation is absent. Then, apart from the negligible diffusion and advection terms,
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the production term in (11b) may be balanced only by the adiabatic growth rate of the
buoyancy variance which because of b02 ¼ 2N2W, is proportional to the adiabatic
growth rate of eddy potential energy Wt.

As we discussed in Introduction, the component �r
� of the diapycnal tracer flux

is generated by transport of the mean tracer by the diapycnal mesoscale buoyancy
flux and both fluxes have the same diffusivity �rm, (3a,b), whereas the diapycnal
tracer flux ~��, (4a), is determined by tracer dynamics. To parameterize this flux, one
should analyze it in IC. So we consider the status of ~�� in terms of Ff

Aand Fs
A in IC

using relations (10d). Choosing A ¼ �00 we obtain

Fs
�00 ¼ ��00z00t , Ff

�00 ¼ �00w00 � �00u00EJ� �z� �00J�z00E�u� �00u00EJ�z00: ð12aÞ

To relate the second expression to ~�� , (4a), we transform the latter to IC. In the main
order in the small parameter h00= �h we use (1c) and the relation JH

�b ¼ �N2
J� �z.

Retaining only the first term on the right-hand side of the first relation (1c), from
(4a) we obtain

~�� ¼ �00w00 � �00u00EJ� �z: ð12bÞ

Neglecting the term of the third order in fluctuating fields in (12a) and then comparing
expressions (12a,b), we deduce

~�� ¼ Ff
�00 þ �00J�z00E�u: ð12cÞ

Finally, from (9d), (12c), and the first equation (12a) we obtain the following relation

~�� ¼ �00ðz00t þ �uEJ�z00Þ, ð12dÞ

which will be used for parameterizing ~�� in the next section. Recall that in (12)
averaging is performed in IC. Results (12c,d) would be analogous to one (11c,d)
if we did not neglect the advection term in (11b) (the second term) which is analogous
to the last terms in (12c,d). In the next section we show that the first term on the
right-hand side of (12c) typically dominates over the second one although the latter
is not negligible and should be taken into account.

5. Mesoscale parameterization in complete tracer equation (7a)

As we discussed after (1e), the mesoscale tracer flux is split into ones ~Fb and ~F� which
are determined correspondingly by buoyancy and tracer mesoscale dynamics.
Therefore, in order to parameterize the functions uM and ~�b originating from ~Fb and
given in equation (6c,a), it is sufficient to solve only buoyancy (density) equation of
the dynamic mesoscale model what we did in the previous work (OM1, 2, GAFD).
Thus, the parameterizations of these functions either were derived there as for the
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case of uM, or can easily be obtained from the previous results. In fact, to
parameterize ~�b, it is convenient to decompose it as follows:

~�b ¼ �r
� þ

~�r
� , ð13aÞ

where �r
� is given by (3a,b), (7c) and

~�r
� ¼ N�2FH

b EJ �� ��: ð13bÞ

In (3b) the flux �r
� is expressed through the residual diapycnal diffusivity �rm ¼ �N�2�b

which was parameterized and evaluated in the previous work (OM2, AGFD2).
In particular, as shown in OM2, �rm achieves a maximum where the eddy
potential energy is maximal (at about 600m depth) and there it can exceed the diabatic
(background) diffusivity. Thus account for the term �r

� in the tracer equation (7a,b) is
important.

Next, ~�r
� (13b) is expressed through the flux FH

b which relates to uM as given in (6c).
Since the dynamic model yields the boundary condition b0 � 0 at the surface and
bottom, we deduce the analogous condition for the buoyancy flux. Therefore

FH
b ¼ �N2

Z z

�H

uþð�Þd�: ð13cÞ

From this relation and equation (13b) it follows that the contribution to the tracer
equation (7a,b) of the eddy induced advection and of @ ~�r

�=@z are of the same order
of magnitude. Therefore, account for the latter is important.

Contrary to the functions uM, �r
� and ~�r

�, in order to parameterize the functions
D(�) and ~�� which originate from ~F� and are determined by mesoscale tracer
dynamics, we need not only dynamic equations for the mesoscale velocity and thick-
ness fields but also that for the tracer which we did not consider in the previous
publications. Now this work is in progress although not finished. Below we param-
eterize the flux ~�� phenomenologically once it is commonly adopted to the phenom-
enological parameterization of the diffusion D(�) in the form of (5b,d). As we
discussed in Introduction, the parameterization process must begin with transforming
the definition of ~�� given in (4a), to IC where modelling is much simpler than in ZC.
The result of the transformation has been obtained in section 4 and presented in (12d).
If we apply the Fourier transformation to this result both in time and space within 2D
isopycnal surfaces, the expression in the parentheses in (12d) becomes ð�i!þ i�uEqÞz00

where q is a 2D wave vector. In OM2 and GAFD we showed that for mesoscale eddies
! ¼ qEudr where udr is the eddy drift velocity whose expression in terms of large-scale
fields is given in these articles. Thus, the considered Fourier transformation can be
presented in the form iðu� udrÞEqz

00. This result allows us to present expression
(12d) as follows:

~�� ¼ ð�u� udrÞE�00J�z00: ð14Þ
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Therefore, the parameterization of ~�� reduces to that of the correlation function on the
right-hand side of (14). Below we model the latter phenomenologically on the basis that
the mesoscale field is quasi-geostrophic for which case we have

J�z
00 ¼ fkT

@u00

@b
: ð15aÞ

In addition, we notice that the mesoscale fields u00 and @u00=@b have approximately
the same (or opposite) direction since u00 represents a quasi-circular motion of the
eddies around their centers. Using also the first relation (1c) and neglecting the
second term in its right-hand side, we obtain

@u00

@b
¼

u0

u0
@u0

@b
¼

u0

2

@ðln�Þ

@b
¼

u0

2N2

@ðln�Þ

@z
ð15bÞ

where �ðzÞ � KðzÞ=Ks is the normalized profile of eddy kinetic energy (Ks is the surface
eddy kinetic energy) which was parameterized in terms of large-scale fields in OM2 and
GAFD. From (14), (15) we obtain the relation

~��k ¼ �
f

2N2
ð�u� udrÞ

@½ln�ðzÞ�

@z
T ~FH

� , ð16Þ

which reduces the parameterization of ~�� to modelling the flux ~FH
� ¼ u0�00 whose

phenomenological model is accepted in the literature in the form (5d). Thus, we
obtain the result

~��k ¼ ��MMTJ �� ��, ð17aÞ

where

M ¼ �
f

2N2
ð�u� udrÞ

@½ln�ðzÞ�

@z
: ð17bÞ

Finally, the contribution of ~�� into tracer equation (7a,b) should be compared with
that of the diffusion term (5b) since the both depend on ~FH

� ¼ u0�00. Evaluating r�

through the typical horizontal length scale � 106 m, we obtain

D � 10�6u0�00: ð17cÞ

To compare D with the contribution of ~�� , we notice that the main contribution to (16)
comes from the drift velocity whose main term, as follows from equations (4e,f) of OM2,
is of the order fr2dj@L=@zj where rd is the Rossby deformation radius and L is the slope of
isopycnals. Taking f � 10�4 s�1, r2d � 109 m2, jLj � 10�3, and j@zj � 10�3 m�1, we obtain
udr � 10�1 ms�1. Since the order of �u is a few cm s�1, we conclude that the second terms
dominate in (16). With account for this result, from (16) we obtain

~��
z � 10�6u0�00 � D: ð17dÞ

Thus, we conclude that the term ~��
z is important in the mean tracer equation (7a,b).
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In conclusion, in the present section we have derived the parameterization in
terms of large-scale fields for the fluxes ~�b and ~�� which thus far have been
missing in the tracer equation of ZC-OGCMs. The parameterization is given
in (13a–c), (3a,b), (17a,b) in which �b, uþ, �(z), udr have been parameterized in OM2
(see equations (7d–g), (4a–f) and (5a–g)). In particular, in OM2 it is shown that �rm
vanishes at the surface and the bottom. Then from (3b) and (13b,c) it follows that
the boundary condition (7e) is satisfied. The same is true for condition (7g) since the
normalized profile of eddy kinetic energy �(z) achieves a maximum at the surface
and a local maximum at the bottom (see OM2). Thus, the derived parameterization
satisfies the boundary condition (7e,g).

6. Mesoscale tracer mixing tensor

As we noticed in the end of section 2, independently of a mesoscale modelling, in (7a)
the correction ��

z to the OGCMs tracer equation (2a) is of the same order as the meso-
scale contribution itself. This becomes especially clear if we represent the tracer flux
with use of the mixing tensor J (Rhines and Holland 1979, Plumb 1979, Plumb and
Mahlman 1987, Griffies 1998) as

F� ¼ �JEJ� ð18aÞ

and decompose J into symmetric and antisymmetric components

J ¼ Kþ A ð18bÞ

which correspond to a diffusion and advection (or skew-diffusion). The 3D advection
velocity U� relates to the antisymmetric tensor A as follows:

U� ¼ �JEA: ð18cÞ

Taking the divergence of this relation and taking into account the anti-symmetry of A,
we conclude that

JEU� ¼ 0: ð18dÞ

Specifically, in the OGCMs equation (2a), K equals the Redi diffusion tensor given
in (2c), whereas the advection velocity U� equals uM (2b). Next, we show that the
term ��

z in equation (7a) drastically changes these relations. With this end in view,
we write down the corrections to the mixing tensor and to its symmetric and anti-
symmetric components, as well as to the advection velocity (18c), due to the flux
k ~�r

� . Straightforwardly from (13b) and (5c) we obtain the following contributions of
~�r
� to J, K, A, and U�:

Jð ~�r
�Þ ¼ �N�2k FH

b þ kLEFH
b

� �
, ð19aÞ

Kð ~�r
�Þ ¼ �1

2N
�2 kFH

b þ FH
b k

� �
�N�2kkLEFH

b , ð19bÞ
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Að ~�r
�Þ ¼ �1

2N
�2 kFH

b � FH
b k

� �
, ð19cÞ

U�ð ~�
r
�Þ ¼ �1

2 uM: ð19dÞ

The form of (19) does not depend on mesoscale modelling.
To show that the term ��

z in (7a) yields a correction to the OGCMs equation (2a) of
the same order of magnitude as the mesoscale contribution, it is sufficient to demon-
strate this for the GM model. Within this model, N�2FH

b ¼ �ML and, in addition,
all fluxes across mean isopycnals, like �r

� and ~�� , equal zero. Thus, in accordance
with (7b), (13a), in equation (7a), we may substitute �� ¼ ~�r

� whose diffusion tensor
is obtained from (19b) to be

KGMð ~�r
�Þ ¼ �1

2 �M ðkLþ LkÞ þ 2LELkk½ �: ð20aÞ

This expression together with the Redi diffusion tensor (2c) yields

KGM
tot ¼ �M �ð2Þ þ 1

2 ðkLþ LkÞ
� �

: ð20bÞ

In addition, with the use of (19d) we obtain

UGM
� ðtotÞ ¼ 1

2 uM ð20cÞ

which is only the half of the mesoscale advection velocity in the OGCMs equation (2a).
The diffusivity tensor (20b) also considerably differs from the Redi one (2c) (in particu-
lar, it does not contain the vertical diffusion). Result (20c) may seem surprising since
equation (7a) is equally applicable to the buoyancy in whose equation (7d) the meso-
scale advection velocity is twice as (20c). The resolution of the apparent discrepancy
is that the other half of the mesoscale advection term in (7d) is yielded by
the diffusion (20b). In fact, from (6c) and (19b) and with account for vanishing the
Redi diffusion for the buoyancy field, we deduce

JEKEJ �b ¼ �1
2 uMEJ �b: ð20dÞ

On the other hand, the mesoscale contribution to the buoyancy equation may also
be interpreted as the contribution of the advection velocity equal to uM and of the
only diffusion tensor component �rm given in (3a). Since splitting the mixing tensor
into symmetric and anti-symmetric parts (18b) is unique, the question arises
whether deducing the mixing tensor from an expression for the divergence of the flux
is unique. The answer is positive provided one imposes the additional condition
that J does not depend on a mixed field. Indeed, under this condition, from (18a,b)
we obtain

JEF� ¼ �Kij
@2 ��

@xi@xj
�

@

@xi
ðKij þ AijÞ

@ ��

@xj

	 

: ð20eÞ
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By equating the terms of the mean tracer equation which contains the second deriva-
tives of ��, with the first term in (20e), one can reconstruct the symmetric tensor K.
By equating the terms of the same equation, which contain the first derivatives of ��
with the second term in (20e) and using the result for K, one can reconstruct
U� ¼ �JEA. The imposed condition is satisfied in (19)–(21) and (2c) for the tracer
field and is not satisfied for the buoyancy. Thus, for buoyancy the choice of J on the
basis of equation (7d) is not unique as we have discussed just above. However, if
one defines the mixing tensor for the buoyancy Jb as that for a tracer with the further
choice � ¼ b, then the definition of Jb becomes unique. With this definition, relation
(20c) is valid also for the buoyancy field in which case the other half of the mesoscale
advection term in buoyancy equation (7d) is yielded by the diffusion (20b), as
(20d) shows.

Finally, for completeness, we present the mixing, diffusion and skew-diffusion tensors
for the fluxes �r

� and ~�� which are obtained straightforwardly from relations (3b)
and (17a), (5c):

Jð�r
mÞ ¼ Kð�r

mÞ ¼ �rmkk, Að�r
mÞ ¼ 0, ð21aÞ

Jð ~��Þ ¼ �MðkkTMþMTLkÞ: ð21bÞ

Here Kð ~��Þ and Að ~��Þ can be obtained by symmetrizing and anti-symmetrizing the
tensor (21b).

7. Conclusion

The main goal of the present article is to find the optimal decomposition of the adia-
batic component of the mesoscale tracer flux F� in the ZC mean tracer equation
from the viewpoint of its interpretation and parameterization. We show that the very
fact, that IC are the most appropriate for any dynamical approach to mesoscale
modelling, results in splitting the flux F� into two components ~Fb and ~F� which are
of quite the different origins. The first is formed by eddy buoyancy dynamic only
and depends kinematically on the mean tracer field (but not on eddy one) while the
second depends on the mesoscale tracer field and is formed by eddy tracer dynamics
(together with dynamics of other eddy fields) in IC. Correspondingly, the parameteriza-
tion of ~Fb may be written straightforwardly on the basis of eddy buoyancy dynamics
which we have studied in the previous work while eddy tracer dynamics which is neces-
sary for parameterizing ~F� , shall be presented in the next publication. Nevertheless, in
section 5 we present a phenomenological derivation of the parameterization of the full
F�. The result can be used in ZC-OGCMs together with the parameterization of
the mesoscale Reynolds stress obtained in OM2 and GAFD. As we have shown,
the OGCMs tracer equation (2a), used thus far, lacks some important terms of the
complete equation (7a). MM01 found the missing terms up to the second order in fluc-
tuating fields in the form �JEE where E is some flux presented in their formula (55).
To compare this result with the term ���

z in the complete tracer equation (7a),
we transformed the referred equation (55) with use of the evolution equations
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for the eddy fields entering (55). Restricting ourselves with terms of the second order in
fluctuating fields we derived

JEE ¼ �z, ð22aÞ

� ¼ N�2ðU0�0EJ �bþU0b0EJ ��Þ �N�4 ��zU
0b0EJ �b: ð22bÞ

This result is identical to ��� with account for (7b), (6a), and (4a).
Finally, we return to the issue discussed in Introduction that the incomplete OGCMs

tracer equation (2a) used thus far, is formally similar to the complete tracer equation of
the TRM formalism by McDougall and McIntosh (2001) (see their equation (53)).
On this basis, some physical oceanographers conclude that solutions of the TRM
model coincide with that obtained in ZC-OGCMs used thus far, provided one interprets
results for mean tracer fields as that for thickness-weighted mean fields. It would be so
if the equation for �U were independent from ��. In reality the equation depends on den-
sity which, in turn, is a function on temperature and salinity. The corresponding term in
the momentum equation will change if one changes the interpretation of active ��’s.
Thus, the form of the momentum equation depends on an interpretation of �� and is
different in TRM and Eulerian formalisms that is clear from the TRM momentum
equation (66) of MM01 when one rewrites it in terms of �u. We analyzed the additional
terms in the TRM momentum equation and showed that they are essential (Dubovikov
and Canuto 2006). In addition, in this work we also showed that the difference of eddy
induced velocities in (2a) and TRM is also essential. But anyway, the TRM tracer
equation is considerably simpler than the complete equation in ZC formalism.
Therefore, TRM might be a good alternative of ZC-OGCMs.
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